To the Max
Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array: 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2 is in the lower left corner: 9 2 -4 1 -1 8 and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
40 -2 -7 0 9 2 -6 2-4 1 -4 1 -18 0 -2
Sample Output
15 总结 虽然做了dp有一段时间了,但感觉还是一脸懵逼,看到这道题时完全没有思路,然后又是各种翻博客,看了半天才明白应该用什么思路,或许我就是一个 见得多才做的了题的人吧,以前弄奥数也是,很少有自己一次性做出来的新题,我要总结过这些思路后才想到怎么做。总之,在这个题我也学到了许多, 如何将二维转化为一维,如何求最长子串(请原谅我忘记了o(╯□╰)o)。
#include#include #include using namespace std;#define inf 0x3f3f3f3f;int mat[105][105];int temp[105];int n;int main(){ int max; cin>>n; for(int i=1;i<=n;i++){ for(int j=1;j<=n;j++){ scanf("%d",&mat[i][j]); } } max=-inf; for(int i=1;i max1) max1=sum; } if(max